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Problems of structural isomeriGn in chemistry have received much attention. 

But only occasional inroads have been made toward a systematic solution of 

the underlying graph theoretical problems of structural isomerism.  Solutions 

in the past have been partial, with acyclic and cyclic structures being 

treated independently  Recently the "boundaries, scope and limits"3 of 

the subject of structural isomerism of acyclic molecules have been defined 

by the DENDRAL algorithm  .  This algorithm permits an enumeration and 

representation of all possible acyclic molecular structures with a given 

empirical formula. 

Acyclic molecules represent only a subset of molecular structures, however, 

and it may be ai jued that cyclic structures (including those possessing 

acyclic chains) are of more general interest and importance to modern 

chemistry from both a practical and theoretical standpoint.  An approach to 

cyclic structure generation has appeared in a previous paper in this series  . 

That approach, which operates on a set of previously generated acyclic forms 

by labelling hydrogen atoms pairwise and connecting the atoms to which they 

are attached with a new bond, has one serious drawback. The approach cannot 

make efficient use of the symmetry properties of cyclic graphs; hence an 

inordinate amount of computer time must be 

(3) J. Lederberg, O.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum, 
A.V. Robertson, A.M. Duffield, and C. DJerassi, J. Amer. Chem. Soc. , 91. 
2973 (1969).        ~- 

ih)     Y.M. Sheikh, A. Buchs, A.B. Delfino, 0. Schroll, A.M. Duffield, 
C. DJerassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and 
J. Lederberg, Org. Mass Spectrom. , k,  1+93 (.1970). 
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spent in retrospective checking of each candidate structure with 

existing structures to remove duplicates. For this reason, an 

alternative approach to construction of cgcl ic molecules has teen 

developed. This approach is designed to take advantage of the 

underlying graph theoretic considerations, primarily symmetry, to 

arrive at a method for more efficient construction of a complete and 

irredundant list of isomers for a given empirical formula. Central 

to the successful solution of this problem is the generation of all 

positional isomers obtainec' by substitutions on a given ring system. 

This topic has recfc.ved attention for nearly 188 years, with limited 
5 

success . Its more general ramifications go far beyond organic 

chemistry. Graph theoreticians have cr^sidered various aspects of 

this topic, frequently, but not necessarily, in the context of 

organic molecules. Polya has presented a theorem which permits 

calculation of the number of structural isomers for a given ring 

system. Hill ^ has applied this theorem to enumeration of 

isomers of simple ring compounds and Hill     and Taylor    have 

(5)  See, for exampie, A.C. Lunn and J.K. Senior, J.    PhgB.   Chen.. 
33, 1827 (1329) and references cited therein. 

lb) a) G. Polya, Omü' rmä..  281. 11G7 (1935); 
b) G. Polya, Hetv.  Chim.  Acta.  19. 22 (1936); 
c) G. Polya. Z.   k'rust.  92. 415 (T936); 
d) G. Polya. A_c^  gjiftM S|. 145 (1937). 

(7)  a)  T.L. Hill. J. Phyj.  Chem..  47, 253 (1943); 
o)  T.L. Hill. ibid...  p. 413. 
c) T.L. Hill. J. Chem. Mm»,.  11, 294 (1943). 
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pointed out that Polya's theorem permits enumeration of geometrical and 

optical isoraers in addition to structural isomers.  More recently, formulae 

for enumeration of isomers of monocyclic aromatic compounds based on graph 

9a 
theory, perrutation groups and Polya's theorem have been presented " . This 

history of interest and results provides only marginal benefit to the organic 

5-9a 
chemist.  Although the number of isomers may be interesting, these methods 

do not display the structure of each isomer. Also, these methods do not 

provide information on the more general case where the ring system is 

embedded in a more complex structure.  Even for simple cases th"; task of 

specifying each structure by hand, without duplication, is an onerous one. 

Balaban has published a series of papers  addressed, in part, to the problem 

of specification of isomeric structures. Although his method, which differs 

substantially from our own, involves significant manual effort and does not 

arnear to encompass a mechanism for prospective avoidance of duplicite 

9b 9c 
structures, his compilations of isomers of anrmlenes     '     ,  represent an 

,10 
important contribution as extensions to the compilations of Lederberg 

METHOD 

OVERVIEW 

Framework.  The framework for this method is that chemical structures consist 

10,11 
of some combination of acyclic chains and rings or ring systems     .  ine 

problem of construction of acyclic isomers 

9a) A.T. Balaban and F. Harary, Rey. Roum. r.him. , 12, 1511 (196?); b) ibid., 
U, 1097 (1966)-, Erratum, ibid. , 12, No. 1, 103 (l9bT); c) ibid., IT, 865 
(1972); d) ibid. , 18, 635 (1973), and additional references cited therein. 

10) J. Lederberg, DENDRAL-6I4, Part I. Notational Algorithm for Tree Structures, 
NASA Star No. N65-13158, NASA CR-57029; Part II. Topology of Cyclic Graphs, NASA 
Star No. N66-IJ4O7H, NASA CR-68898; Part III.  Complete Chemical Graphs: Embedding 
Rings in Trees, NASA Star No. N71-76o6l, NASA CR-123176. 

11) It is assuned that structures are completely connected by chemical bonds; 
thus catenates and threaded structures are viewed as consisting of separate molecules. 
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(and radicals) has been solved previously . If all possible ring 

systems can be constructed from all or part of the atoms in the 

empirical formula, and all possible acyclic parts are available from 

the acyclic generator, the combination of ring systems with acyclic 

parts in all unique ways would yield the complete list of isomere. 

The method for construction of ring system* is described below. This 

description employs some terms which require definition. The 

definitions also serve to illustrate the taxonomic principles which 

underlie    the    operation    of    the structure    generator.    The 

generator's view of molecular structure differs  in some respects from 

the    chemist's.       A      chemist,    for    example,    may      view    structures 

possessing     the    same    functional    group    or    ring    as    related.     The 

generator works    at  the    more    undamental     level  of    the vertex-graph"j 

as described below. 

10 

Chemical Graph.     A molecular    structure may be    viewed as    a graph, 

termed  the chemical graph,    or skeleton.  A chemical    graph consists 

of  nodes,   with associated atom names,  and edges,  which correspond 

;o cnemical   bonds.   Consider as an example the substituted piperazine. 

1,  whose chemical     graph  is  illustrated  in   Chart  I  as J^.      Note 

that  hydrogen atoms are     ignored by convention,   while  the    symbol   "U* 

is used  to specify  the unsaturation.     The degree   (primary,   secondary, 

...)   of a node  in  the chemical  graoh has  its usual  meaning,   i.e.,   the 

i^   ■•- ■ —~        -■-  - - iniii -     
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number of (non-hydrogen) edges connected to it. The valence of each 

atom determines its maximum degree in the graph. As usaily displayed 

ny chemists in planar representation, the chemical graph describes 

the connectivity rather than the geometric configuration of a 

molecular  structure. 

SupercTtom.     In    general,   a    chemical    graph can    be    separated  into 

cyclic    and acyclic    parts.  Each   cyclic structural    sub-unit    maybe 

deemed a  super a torn possessing    any number of  free    valences^ 

The chemical   graph 2 arises from a combination of  two    carbon atoms 

with ring-superatom 3.    Ring-superatom 3 possesses    the  indicated 

free valences  to which the remaining hydrogen and two methyl  radicals 

will  be attached  (Chart  I). 

CÜJi^lÄ^^i5^•  A ettist*   Bkeleton is a skeleton   with free 

valences but without atom names.   Ring-superatom 3 arises from the 

ciliated skeleton 4 by associating the atom names of eight carbon and two 

nitrogen atoms with the skeleton (Chart I). 

Cydkjikeleton.   A chemical graph whose nodes are not associated 

with atom names and which contains no acyclic parts and no free 

12)     A free valence Is a bond with an unspecified terminus.   Any »ubstruchre, 
cyclic or not, may be treated as a superatom; however, the term, In this 
paper, is generally restricted to cyclic (termed ring-) superatoms. 

  ■iimM.ii i   i i  ■ ■■"—    
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valences is termed a cyclic skeleton.  Ciliated skeleton 4 arises 

from one way of associating sixteen free valences with the nodes on 

the cyclic skeleton^ (Chart I). 

iSflXSXÄÄ- Verte><"9raPhs are cyclic skeletons from which 

nodes of degree less than three have been deleted. The vertex-graph 

of the cyclic skeletjn 5 ifl the regular trivalent graph'0 of two 

nodes. 6. Note that the remaining nodes of the cyclic skeleton 5 

are of degree two. Removal of these secondary nodes from 5 while 

retaining the interconnections of the two tertiary nodes yields 8 

(Chart I). 

As an illustration of the variety of structures which maybe 

constructed from a given vertex-graph and empirical formula, for 

example. C H N ,  consider that graph 6 is the vertex-grsph for 
18 23 2 ,     * , 

all bicyclic ring systems (excluding spiro torras).  Cyclic skeletons 

7 onü   j8 (Chart 1).  for example, may be constructed from eight 

secondary nodes and jS. There are many ways of associating sixteen 

free valences with each cyclic skeleton, resulting in a larger number 

of ciliated skeletons.  For example, 9 and 10 arise from 

different allocations of sixteen free valences to 5 (Ciart I). 

There is only one way to associate eight carbon atoms and two 

nitrogen atoms with each ciliated skeleton to yield superatoms (e.g. 

rianni i  • ■■,-- -  ■     ■■■-- •■-- - ■—■■ - MMMÜMHMMitfH 
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Chart I 

Conventional Representation! 

Composition =    C^HjpNj 

Chemical    Graph: 

Composition =    C   N U 
10   2   2 

Superatoms 

Ring-superatom Composition = C N U 
8   2   2 

Acyclic Superatom Composition = C2 

Ciliated   Skeleton: 

H3C 

I 
HC 

■C^2 SjH 

KjC^   ^H 

XH2 

Cyclic Skeleton: 

Vertex Graph 

9 t c 

fVV r^vN f^vS ill '      ii      ii 

13  A ■J4 

■1... 11     iuu»>_ 



11 and 1?, Chart l).  However, several structures are obtained by 

associating the remaining two carbon atoms (in this example) with each 

superaton, as an ethyl or two methyl groups.  Chemical graphs 13 and lh, 

for example, arise from two alternative ways of associating two methyl 

groups with suneratom 3. 
wm 

Multiple Bonds. For the purposes of this program we adopt the formalism 

that all multiple bonds (double, triple, ...) are considered to be small 

rings by the program.  Previous versions  (acyclic generator) differ from 

this program in that double and triple bonds are regarded as specially 

labelled edges. 

AIM3 

The structure generator must produce a complete list of structures without 

duplication.  By duplicate structures we mean structures which ere 

equivalent in zone  well-defined sense.  The class of isomers generated by 

the program includes only connectivity isomers. Transformations (utilized 

to determine eauivalence) allowed under connectivity symmetry preserve the 

valence and bond distribution of every atom.  Connectivity symmetry does 

not consider bond lengths or bond angles. This choice of symmetry results 

in construction of a set of tojologically unique isomers. A more detailed 

discussion of equivalence is discussed in Appendix A and in the accompanying 

paper  ; a discussion of isomensm and symmetry is presented in Appendix B. 

13)  L. Masinter, N.S. Sridharan, J. Amer. Chem. Soc., 00, 0000 (1973). 

- 
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STRATEGY 

The strategy behind the cyclic structure generator is strongly tied to the 

framework described above.   The strategy is summarized in greatly simplified 

form in Figure 1.   The vertex-graphs from which structures are constructed can 

be specified for a given problem by a series of calculations.   Thus Part A of 

the program (Figure 1) partitions the pot of atoms in all possible ways; each 

partition consists of those atoms assigned to one or more "superatompots" and 

a "remaining pot."   Each superatompot Is a collection of atoms from which all 

possible, unique ring-superatoms can be constructed based on the 

appropriate vertex-graphs (Fart B, Fig. 1).   Each ring-superatom will be a ring 

system in completed structures.   The atoms in the remaining pot will form 

acyclic parts of the final structures when combined In all possible, unique ways 

with the ring-superatoms from the corresponding initial partition (Part C, Fig. 1). 

DESCRIPTION 

Ue are faced with the difficulty of describing a complex computer 

program in the traditional mode of presentation in a scientific 

journal. The narrative for« is not the ideal medium for this 

description; simple examples do not always indicate all essential 

aspects of a program. A deeper understanding of a program could oe 

encpnbered through the use of a large number of well chosen examples, 

but the length of such a presentation would be excessive and would 

tax  the patience of even the most  interested reader, 

3 
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We are thus aware of th« insufficiency of considering only one example in the 

following written description.   We have adopted the strategy of presenting 

essential aspects of the procedure for structure generation in the main 

body of the text.   Details of the description which might obscure Hie 

principal concepts are placed in Appendices C and D.   Mathematical 

details are available elsewhere.     '        We hope this serves the purpose of 

providing the casual reader with a deeper understanding of the method 

withe* having to contend with details which, on the other hand, are 

important to others who wish to make use of our approach. 

The example chosen to illustrate each step of the method is C,H0 (or C.LL as 
6   8 6   3 

there are three degrees of unsaturation). 

This example does not contain bivalent or trivalent atoms (e.g., oxygen end 

nitrogen, n roectively) or atoms of volence greater than four, nor any 

univalent atoms other than hydrogen (e.g., chlorine, fluorine). 

^djt'SQJXia^anäJsbslÜGa-   The mechanism for structure generation 

involves a series of "partitioning" steps followed by a series of 

(l4)(a)     H. Brown, L. Masinter and L. Hjelmelend, Discrete Mathematics, in 
press; 

(b)     Stanford Computer Science Memo STAN-CS-72-0318. 

[15) (a) H. Brown and L. Masinter, Discrere Mathematics, submitted; 
(b) Stanford Computer Science Memo STAN-CS-73-0361. 

10 

    



"labelling" bteps. Partitions are made of items which must be 

assigned to OLj^cts (usually graph structurej or parts thereof) as 

the molecular structures are buiIt up from the vertex-graphs. The 

process by which items are assigned to the graphs is termed labcllingl 

Examination of Chart I reveals the different types of items 

involved. For example, nodes are partitioned among and labelled upon 

the edges of the vertex-graphs to yield the cyclic skeletons. Free 

valences are partitioned among and labelled upon the nodes of cyclic 

skeletons to yield ciliated skeletons,  and so forth. 

'3,/** 

Partitioning steps in the subsequent discussion are carried out 

assuming that objects among which items are partitioned are inoist- 

inguishable. DistinguishabiIity of objects (edges, nodes, ...) is 

specified during label Iing and will be discussad in a subsequent 

section. The partitioning steps performed by the program, are 

outlined in Table 1. Each step is described in more detail below. 

11 
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Table 1. Partifioning Steps Performed by the Structure Generator 

Step # Partition Among 

1 
■ 

Atoms and Unsaturations 
in Empirical Formula 

Superatompots and 
Remaining Pot 

2 Free Valence Atoms in Superatompot 

3 Secondary Nodes Loops/ Non-loops 

4 Non-loop Secondary 
Nodes 

Edges of Graph 

5 Loop Secondary Nodes Loops 

6 Ring-superatoms and 
Remaining Pot 

Efferent Links 
(see Appendix D) 

Ring-superatomP^are^^wo^connected'' structures, i.e., the ring- 

superatom cannot be split into two parts by scission of a single 

bond.     The    atoms  in    an empirical  formula   may be    distributed among 
• 

from one to several such two-connected ring-superatoms. A 

distribution which    allots atoms    to two   or more    superatompots will 

yield     (respectively)     structures     containing    two    or      more    ring- 

16 
superatoms  linked  together hy single bonds  (or acyclic chains) 

lb) Chcmi'otG are more f omi I i tir with t?nvs such as rings or ring 
systems. The term two-connectüd is use.I here in conjunction with 
ring-superatoms     for    a    more    precise    dtscription. For    example, 
tnphenyl may oe viewed as a single ring system or two rings depending 
on the chemical context. In this work, however, biphenyl consists of 
two ring-superatoms   'two phenyl  rings)   linked by a single bond. 

12 
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In the generaHon process, one must find all possible wa/s of partitioning the 

given formula into superatompots and a remaining pot, such that molecules can 

be constructed.   The considerat;ons in f    Tiing superatom partitions deal 

primarily with valence and unsaturation.   This procedure is summarized in 

Appendix C, Superatom Partitions.   The partitions which result are summarized 

in Table II. 

Table  II.  Allowed Partitions of C U    Into Superatompots and Reaainina 
S 3 

Pot. 

Partition Number of    Superatompot    Number Remaining 
Number Superatompots       12 3 Pot 

1 

2 

3 

A 

5 

6 

7 

8 

9 

10 

11 

1 C U 
G 3 

- - 

1 c u 
5 3 

- - 

1 C U 
4 3 

- - 

1 C U 
3 3 

■ - 

2 C U . c u _ 

4 2 2 1 
2 C U c u _ 

3 2 2 1 
2 C U c u ■ 

2 2 2 1 

2 C U C U — 

4 1 2 2 
2 c u C U _ 

3 1 2 2 

2 C U C U _ 

3 2 3 1 

3 C U C U c u 
2 1 2 1 2 1 

13 
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PA[U_jJ.     (iil!iüCJJüK5£äi£5 Construction. 

Each partition (Table 11) must now be treated in turn. The couplete 

se of ring-superatoms for each euperatompot in a given partition 

mus . be constructecJ. The major steps in the procedure are outlined 

in F igure 2. 

Valence, List.   The first step in part B is to strip the superatompot of 

atom names, while retaining the valence of each atom.   The numbers of each 

type of atrm are saved for later laL 3!ling of the ciliated skeletons (Chart I). 

A valence list may then be specified, giving in order the number of bi-, tri-, 

tetra- and n-vaLnt nodes which will be Incorporated in the superatom.   Thus 

the superatompot C LL is transformed into the valence list 0 bivalents, 0 

trivalents, 6 tetravalents (0, 0, 6), and C\)   becomes (0, 0, 4) (Figure 2). 

^°J-c"!a!',on, 0[ Free Valence. From the valence list and the associated 

unsaturation count the number of free valences of each superatompot is 

determined uniquely,   (see Calculation of Free Valence, Appendix C).   For 

<~6U3 t'ie free valence is ^S^ ^'9* 2).   The free valence of a superatom 

represents the number of bonding sites which can connect to hydrogen 

atoms, other superatoms  or atoms in the remaining pet. 

fel-ÜiiSlill^i^SSv.^^ ^e ^ree va'ences are then partitioned 

among the nodes in the valence list in all possible, unique ways,   (see 

Appendix C, Partitioning of Free Valence). 

14 
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DLHjrce List. Each partition of free valences alters the effective 

valence of the nodes m the oriflinal valence list with respect to the 

r ing-soperatom. In the example, assignment of one or two free 

valences to a tetravalent node transforms this node into a tri- or 

bivalent node respectively. As the ring-superatom is constructed, 

those  tetravalent nodes which have been assigned,  say,  two free 

valences, have then only two valences remaining for attachment to the 

17 
r mg-superatom.     These nodes are  then    of degree two and    may be 

termed secondary nodes. Thus the partition of free valences 

2,2,2,2,0,0 on six tetravalent nodes yields the degree list (4,0,2) 

(Fig. 2) as four jf the tetravalent nodes receiv« two free valences 

each, yielding four nodes of degree two (secondary) and leaving two 

nodes of degree four 'quaternary). The program keeps track of the 

number of free valences assigned to all nodes for use in a subsequent 

step. 

• 

Loops.   As will  be clarified  in the subsequent discussion,   there are 

several   general   types of ring-superatoms which cannot    be constructed 

from  tne    vertex-graphs available  in    the CATALOG    (described below). 

17)      Use of the term degree with reference to the degree list refers to the 
number of bonds other than free valences, with double bonds bt ing counted 
twice.   A free valence may or may not eventually be attached to a hydrogen 

atom In the final structure. 

15 
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These are all cases of multiple extended unsaturations either  in the 

form of double Oonds or rings.  Examples are the following: 

1) bi-, tri-, ... n-cydics with exocyclic double bonds; 
2) some   types of ^piro rmg systems; 
3) allenes extended Dy additional double bonds, e.g., 

C-C-C-C 

The concept of c loop, each loop consisting of a single unsaturation and at least 

one bivalent node, must be utilized for these cases.   Examples of loops 

containing one, two and three bivalent nodes are shown In Chart II.    Note that 

the two remaining "ends" of the unsaturation will yield a "looped structure" 

when attached to a single node in a graph (shown as X^ Chart II). 

Chart   11 
di valents - 1 

O   O  O 
The  method   for  specification of   loops   is discussed  in    Calculation of 

Loops,   Apnenoix C. 

Partitioning of Secondary Nodes among Loops and Non-loops.   The secondary 

nodes in the degree list are partitioned between the loops (If any) calculated 

in the previous step and the remaining non-loop portion of the eventual graph. 

16 
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Aspecfs of this partitioning step are presented in Partitioning of Secondary Nodes 

Among Loops and Non-Loops, Appendix C.   Results for the example are 

indicated in Figure 2, 

Reduced O^rf ^i«t.   This procedure yields the reduced    degree  list 

which contains none of   the secondary nodes originally present    in  the 

aegree   list.   Any secondary nodes appearing   in the r-duced degree   list 

are   termed  "special"  secondary    nodes as these nodes i.ili    have  loopr. 

attached   m  subsequent  steps. 

Ve^ex-Graphs.   The reduced degree     lists are used to specify    a set 

of   vertex-graphs  for   the eventual  ring-superatoms.    All   two-conracted 

structures can    be described by    their  vertex-graphs,   which    are.   for 

most     structures,   regular     trivalent graphs.       This concept    has been 

described     in detail     by    Lederberg ,0     ,     who has    also    presented a 

generation and classification scheme   for  such graphs.    Given a set  of 

a   I   vertex-graphs,   the  ;et    of all   ring-superatoms may    be specified 

:ne     vertex-graphs    are mamtained    by     the program     in    the CATALOG. 

Catalog  antritt   for regular   tnvalent  graphs possessing two    and  four 

noU«*   ore  prtsenteü   In  Table  Hi.     This   list  must be    supplemented by 

.nidi t icnol   vertex-graphs  to cover several   special   cases    required  for 

generation    of    all     structures    for     the    example.       These    are also 

presented     m    Table    III.      Uith    the    reduced    degree     list      of    a 

15 
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TABLE III.   Vertex-Graphs Necessary for Construction of Isomers 
of C.H   .   This is a Partial Listing of the Catalog. 

Planar 
Representation     Name 

0)    _ 

a 
2A 
(hosahedron) 

4AA 

(tetrahedron) 

Tetravalent 
Dihedron 

"Daisy" 

Number of Nodes 
of Degree 

Three Four        Remarks 

2 

4 

Singlering k"        0 

0 

0 

2 

0 
Regular trivalent graph 
of two nodes 

Regular trivalent gruphs 
of four nodes 

A single ring composed 
of k secondary nodes 

Two nodes of degree 
four 

A single quaternary 
node 

(a)      .•    Listing of  reference  10 has  been  expanded to  include vertex-graphs  of 
other combinations of nodes of degree three and four'     .    The completeness 
-*   i.'"  Catalog has beer verified where possible by independent graph 
construction methods ^ and by  comparison with Falaban's compilations^'^0 

where appropriate. 

.'Jai.-es,   except  those  in quotation markf:,  taken  from Lederberg. 10 

l8a)     M.S.   Sridharan,  unpublished results; b)  L.  Masinter, unpublished 
results. 
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superatompot. tht progrM requests the appropriate CATALOG entrie3. 

In the MMpI« (F,g. 2). the reduced degree list (0.O.2) 6pecif.es 

vertex-oraphs containing two quaternary nodes Uetravalent dihedron). 

The redt..^ üecjree l.st 10.4.OI specfies regular tr.valent flraphs of 

four nodes, of uhich there c're tuo: 4AA and ^ (Table 111). Uhen 

onlj secondary nodes ore present in the reauced degree list, the 

grapn "Singlering" (Tabie HI) is utilized. 

I^eHude. Up to this point the progran, has effectively decomposed 

the problem mto a •tritt of euoprobie^s. uorking down from the total 

pot of otoms through a senes of partitions and subpartitions to the 

set of pottifeit vertex-grapha. In subsequent steps the vertex-graphs 

are expandeo to the f.nal structures by a series of constructive 

graph label I ings (Table IV). 

18 

■ - mmm 



. 

Table IV.        The Six Graph Labelling Sfeps Performed by fhe Labelllnq 
Algonfhm a 

Labelling Step Function 

1 Lab-I Edges of Vertex-Graphs with 
Special Secondary Nodes 

2 Label E^ges of Resulting Graphs with 
Non-Loop Secondary Nodes 

Label Loops of Resulting Graphs with 
Loop Secondary Nodes 

5 

Label Nodes of Cyclic Skeletons with Free 
Valences 

Label Nodes of Ciliated Skeletons with Atom Names 

Label Free Valences of Superatoms with 
Radicals (see Appendix D) 

i^JJin?    lÄ   •! ^^-iCÄ   SU»J   Special    Secondarj^Nodtes. 

Special   seconaarg noaes are  tnose  that uiil  have   loops    attached.   The 

specification of   the possiole    attacnments of   the nodes  to    the graph 

'a a    "laoeiling" proceaure.      Th.sis    thef-rst    ofsiM    such graph 

lapel ling  steps performed Py    «ne pro-am.     (TaDle IV).   All     of  these 

laoelung    !3teps     mvoive    Ue same    conibinatcr ial    problem,     that of 

•SSOCiating a set of n  laoels.  not necessar.iy o.stinct.  u.th a set 

of   ObjtCtl mth arbitrary symmetry'3      .   The 9ame   labe,iing aigorithm 

is utilise  for each of  the six  labelling steps.  A description of  the 

unctorlving    mathematics and    proof of    completeness    and  irredundancy 

appears  separately'4 
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Some aspects of the first labelling step indicate how equivalent labellings (which 

would eventually yield duplicate structures) may be avoided prospectively, 

by recognition of the symmetry properties of the graph; In the first labelling, 

the vertex-graph.   These symmetry properties are expressed in terms of the 

permutation group (see Appendix A and refs. 13 and 14) on the edges of the 

vertex-graph.   This permutation group, which defines the equivalence of the 

edges, may be specified in the CATALOG or, alternatively, calculated as 

needed by a separate part of the structure generator.   As subsequent steps are 

executed, a new permutation group (e.g., on the nodes for labelling step four, 

fable IV) is derived as necessary   "     .   Thus, only labellings which 

result in unique expansions of the structure are permitted.   The reader 

examining Fig. 2 may note that for this simple example the symmetries of the 

vertex-graphs and subsequent skeletons can be discerned easily by eye.   For 

example, all edges of the tetravaient dihedron are equivalent, as are all the 

edges of the regular trivalent graphs 2A and also 4BB.   The |3BCB graph 

(Table II, Fig. 2) has four equivalent edges and one other edge, and so forth, 

in the general case, however, the symmetries of the vertex-graphs and 

subsequent expansions thereof are not always obvious. 

With the group on the edges specified, the labelling of the vertex- 
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grapns m th bpec al secondary nodfjs is carried out. The results of 

th,s procedure for parti t ions containin0 loopa are indicated in 

Firiure 2. 

Lobeinng with^ Npfl-Lpop Secondary Nodes.   Tlie graphs which resulted from 

the previous labelling are now labelled with the partitions of non-loop 

secondary nodes (see Partitioning of Non-Loop Secondary Nodes Among 

Edges, Append:x C).    Each of the five partitions for the tetravalent dihedron 

'n rig. 2 results in c single labelling, as all four 

edges of the graph ore equivalent.   When edges are distinguishable there may 

be several ways to label a graph with a single partition.   There are, for 

example, for the S3BCB grap'i, two ways to label with the partition 3,0,0,0,0, 

four ways with the partition 2,1,0,0,0 and three ways with the partition 1,1,1,0,0 

(Fig. 2). 

[S^llJS^ ti& l°°B Se£0[}dary Nodes;   There remain unassigned to the graphs 

at this point only secondary nodes which were assigned to loops.   These 

nodes are first parHtfoned among the loops,   (see Partitioning of Loop 

Secondary Nodes Among Loops, Appendix C).   For example, 

following the path from the degree list (H.0,2) through labelling 

with non-loop secondary nodes (Fig. 2), there are two ways of 

labelling the two equivalent loops with four secondary nodes.   There 

is one way to label the two loops of the adjacent graph with three 

21 
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secondary nodes and one uay of   labelling the tuo  loops of each of  the 

tue remainincj graphs   in  this    eection of Figure 2 with    two secondary 

nodos.     jn  this example   (C U )   the  loops  in every case are equivalent 
S 3 

f or there is only one loop to be labelled.  In the general case loops 

may not be equivalent, resulting in a greater number of ways to label 

loops with a given partition of secondary nodes. 

rÜ£jJ£ QZJStZül' The Previous labelling steps specified the number 

of secondary nodes on each edge of and lojp attached to the vertex- 

graphs. AM atoms in the original superatompot are thus accounted 

*or. A representation of the result is the cyclic skeleton, where 

nodes and Iheir connections to one another are specified. (These 

skeletons begin to resemble conventional chemical structures.) 

\^Si}jS!9  üiü) ^re0    yjtlSDS**'   T^e "odes in a cyclic skeleton are 

tnen labelled with free valences, yielding ciliated skeletons. This 

labelling is trivial in the exawple. as al I atoms are of the same 

valence (four) (Figure 2). Free valence labelling is performed with 

knowledge of how many atoms of each valence were present  in the 

original  superatompot, but  independent of the identities    of the 

•to«». The combinatorial complexity of this labelling problem follows 

from the possible occurence of atoms with differing valences. In the 

general case there may be several ways to perform this labelling on a 

22 
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single cyclic skeleton, whereas in the C U example there is only one 
6 3 

wöy. 

LcJbelling with Atom Names. The nodes of a ciliated skeleton are 

then labelled with atom names to yield the ring-superatomU). Again 

this labelling is trivial in the example, as only one type of atom is 

present (caroon), yielding in each case onli a single superatom (Fig. 

2). If there is more than one type of atom wit! the same valence 

(e.g., silicon and carbon), the labelling problem is more complex. 

Each node of appropriate valence ma. be labelled with either type of 

atom. Duplicate structures are avoided by calculations involving the 

group pertaining  to  the set of nodes of equal  valence. 

PART C. Acyclic Generator. 

The superatom partition expanded In the example had no atoms assigned to 

acyclic chains (remaining pot).   The set of rlng-superatoms on completion of 

Part B, above, thus yields the set of 36 structures on placement of a 

hydrogen atom on each free valence (Fig. 2).   If the superatom partition 

(partitions 2-11, Table.II) contained more than one superatompot or 

any atoms In the remaining pot, the acyclic generator must be used to 

connect the segments of the structure in all ways.   This procedure Is 

described in detail in Appendix D. 
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DISCUSSION 

CS5ei5Ü°CUoL X6H8. Tne example (Fig. 2) hae considered only 

expansion of a single superatom partition. It might be instructive 

for the reader to attempt to generate all. or at least the remaining, 

structures for C^.  The number of solutions ie presented in a 

subsequent section. If the algorithm as outlined in Figure 2 is 

folloued. it  is suggested that the initial superatom partitions in 

Table II N examined carefully.  These partitions  yield some 

indication of the types of structures which «ill result from each 

partition. For example, partition 4. C U in a single superatompot. 
3 3 

plus three carbons in the remaining pM. should yield all structures 

containing a three-membered ring possessing two double bonds or a 

triple bond. As there are only tuo free valences, the remeining 

atoms can be in a single chain (?s  a propyl or iso-propyl radical) or 

as a methyl and an ethyl group, but not as three methyl groups. 

Cg^RUtllttt and Jrredundancy. Although a mathematical proof of the 

completeness and irredundancy of the method exists*5 . there is no 

gjörantee tnat the implementation of the algorithm in a computer 

program maintains trese desired characteristics. Confidence in the 

completeness and irredundancy of a program of this complexity can be 

encjenciered in the following ways: 
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l) Verification of the program's performance by another, completely 

independent approach. An independent method has been developed which 

enumerates, but does not construct, all isomers of compositions containing 

C,H,N, and Ü   .  It is interesting that the program for simple counting 

of the solutions is significantly slower than construction of all of the 

solutions, despite some effort to improve the efficiency of the former 

program. Thus, due to limitations of computer time, we have been limited 

to comr»ositions containing only 5 or fewer non-hydrogen atoms. For these 

cases, however, the numbers of isomers obtained by both programs agree. 

9d 
Balaban has presented lists of isomers of C, H, , C^-H,, C-H« and CjH.O  , 

These lists were derived from his tables  of graphs of degrees 2-h  and 

orders (numbers of nodes) 1-5. Although we agree with his lists of 

hydrocarbon isomers, the list of isomers of C,H,0 is incomplete.  The 

o © © 
structure generator provides 62 structures (as opposed to 59)« The three 

missing structures are: 

9d 
These structures should have been produced following Balaban's method 

The fact that they were not points out the difficulties inherent in any 

procedure for isomer generation in which manual steps are involved (see below) 

2) Testing by manual generation of structures. Several chemists, all 

without knowledge of the algorithm described above, have been given several 

test cases, including C^-U , from which structures were generated by hand. 

Familiarity with chemistry is no guarantee of success, as evidenced by the 

performance of three chemists for the superficially simple case of 

CgU  (CgHg, Table V). 
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Table V. Performance of Three   Chemists in Manual Generation 

""6H8 W of Isomers of C^ (C^UJ.   There are 159 i; 

Number Generated Type of Error 

Chemist 1 161 4 duplicates; 4 omissions 
2 witfi 7 carbon atoms. 

Chemist 2 168 16 duplicates; 7 omissions 

Chemist 3 160 2 duplicates; 1 omission 

One PhD and two graduate students. 

This example indicates that for more than very trivial cases, 

it is extremely difficult to avoid duplicates (tricyclics, for 

example, are difficult to visualize when testing for duplicates) and 

omissions.   Omissions appear to result from both carelessness and 

neglect of ring systems that are implausible or unfamiliar.   The 

program seems better at testing the chemist than vice versa.   In 

every instance of manual structure generation, no one has been able 

to construct a legal structure that the program failed to construct. 

No one has been able to detect an instance of duplication by the 

program.   This performance builds some confidence, but manual 

verification of more complicated cases is extremely tedious and 

difficult.    Isomers for many empirical formulae have been generated, 

and some results are tabulated in Table VI.    Tbe choice of examples 
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has been motivated by a desire to test all parts of the program where 

errors may exist while keeping the number of isomers small enough to 

allow verification.    In this manner all obvious sources of error have been checked, 

for example, construction of loops on loops, multiple types of atoms of the same 

valence (e.g., Cl, Br,  I) and examples containing atoms of several 

different valences including penta- and hexavalent atoms. 

3) Varying the order of generation. The structure of the 

program pormits additional teats bg doing some operations in a 

different order. For example, one variation allowed is to leave 

hycrogens associated uith the atoms in each partition rather than to 

strip them away initially and place them on the remaining free 

valences in the last step. Each such test has resulted in the same 

set  Of   isomers. 

A)   Using Polya enumeration at   the various     labelling steps 

of the procedure to verify the correctness of sub-parts of the 

prcjrt-im. Using various combinatorial formulae, one can insure that 

tne results of at least parts of the program are consistent with 

mcJupcndcnt calculations. This approach uas used extensively in the 

Llevdiopment  of   the  Iabel I inq algor i thm. 
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In summary, the verification procedures utilized have all indicated 

absence of errors in the computer implementation of the algorithm. 

Also, there is no clear reason uhy generation of larger sets of 

isomers should not also proceed correctly. The final verdict 

however, must await development of new mathematical toole for 

verification Dy enumeration   (see above)  or an alternative algorithm. 
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Table VI.   The Number of   Isomers  for Several  Empirical  Formulae'" 

Number of  Isomere       Manual Ig Verified? Emp i r ica 
Formula 

C H 
6 5 

C H 
6 8 

C H 
8 10 

C H 
8 12 

C H 
6 U 

C ri 0 
u  6 

C H 0 
S 10 

C H 0 
8 12 

C H N 
3 4 2 

C H N 
3 6 2 

C H N 
3 8 2 

C h N 
3 10 2 

C H P 
^ 9 1 

Example 
Compound 

benzene 217 

l.S-cyclohexadiene  15S 

cyclohexene        77 

eye 1ohexane 

hexane 

phenol 

cydohexanone 

2-hexanone 

25 

5 

2237 

747 

211 

155 

13S 

tetrahydropyazole 62 

propylenediamine U 

(pentiivalent P)    110 

Pyraroie 

^-pyrazoline 

yes 

yes 

yes 

yes 

yes 

no 

no 

yes 

no 

yes 

no 

yes 

no 
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CgßsJxftiQj's.   TVie structure generator is designed to produce a list of all 

possible graph isomers (Appendix B).   This list contains many structures whose 

existence seems unlikely based on present chemical knowledge,   in addition, 

the program may be called on to generate possible structures for an untnown 

in the presence of a body of data on the unknown which specify various 

features, e.g., functional groups) of the molecule.   In such instances 

mechanisms are required for constraining the generator to produce only 

structures conforming to specified rules.   The implementation of the 

acyclic generator possessed such a mechanism in the form of GOODLIST 

3 
(desired features) and BADLIST (unwanted features)   which could be 

utilized during the course of structure generation. 

The complete structure generator is less tractable.   As in prospective 

avoidance of duplicate structures, it is important that unwanted structures, or 

portions thereof, be filtered out as early in the generation process as 

possible.   It is relatively easy to specify certain general types of constraints 

in chemical terms, for example, the number of each of various types of rings 

or ring systems in the final structure, ring fusions, functional groups, sub- 

structures and so forth.    It is not always so easy to devise an efficient scheme 

for  utilizing a constraint in the algorithm, however.   As seen in the 

above example (Fig. 2) the expanded superatom partition results in what would 

be viewed by the chemist as several very different ring systems. 
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The design of the program facilitates some types of constraints.   For 

example, the progn n may be entered at the level of combining superatoms to 

generate structures from a set of known sub-structures.    If additional 

atoms are present in an unknown configuration, they can be treated as a 

separate generation problem, the results of which are finally combined in all 

ways with the known superatoms.   This approach will not form additional two- 

connected structures, however.   Constraints which disallow an entire 

partition may be easily included.   For example, it is possible to generate 

only pure ring isomers by "turning off" the appropriate initial superatom 

partitions. 

Much additional work remains, however, before a reasonably complete set of 

constraints can be included.   The implementation of each type of constraint 

must be examined and tested in detail to ensure that the generator remains 

thorough and irredundant. 

CONCLUSIONS 

The algorithm summarized In this paper permits the substantial realization of 

the graphical structures that constitute the domain of organic chemistry.    The 

version of  the  algorithm presented here  ignores   the  tetrahedral symmetry 

of the valences of the carbon atom.   However, the topological framework 

readily admits of systematic tests for asymmetric centers which can then be 

assigned to the dlchotomous categories of the alternating group A..   TTiis 
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framework  also provides  a simple, systematic weighting of radicals   for 

assignment  of precedence  that proves  to be,  if anything, even more 

straigntforward,  comprehensive  and  free  from ambiguity  than  the Cahn- 

19 Ingold-Prelog conventions 

The mathetmatical  framework  of üU>   analysis  is  a mapping of chem- 

ical bonds  onto the  edges  of topological graphs.     This  simplification 

can  lead  to disparities,   for example  in  the  description  of coordination 

complexes,  the bonds  of which  are non-equivalent.     The symmetries  of 

such  complexes  are  similar to those  of certain superatoms ,  suggesting an 

obvious  and easy way  to extend  the  system.     Likewise,  the system does 

not  now  accommodate  isomerism based on steric hindrance,  or the associa- 

tion  of molecules  by secondary  forces,  or by non-covalent  constrants. 

For example,  from a  topological standpoint,  threaded molecules,  or 

catenanes,  are  disjoint  graphs.     Nor do we  attempt  to display the geo- 

metric  conformations  of molecules:   indeed, some  topologically plausible 

structures  may be  chemically  unrealizable. 

Conversely,  implausible  constructs,  such  as  carbon atoms possessing 

"inverted" tetrahedral geometry      may become  reality by empirical dis- 

covery.     The  constraints  on  chemically plausible  structures  depend on 

(19) R.   S.   Cahn,  C.   K.   Ingold, and  V.   Prelog,  Angew.   Chem.   Internat.  Ed., 
/S,   385  (1966).  ~  

(20) (a) K.   B.   Wiberg and G.  J.  Burgmaier, J.   Amer.   Chem.  Soc. ,  94, 
7396 (1972);  —   m 

(b)   K. B. Wiberg, G. J. Burgmaier, K. Shen, S. J. LaPlaca, W. C. 
Hamilton, and M. D. Newton, J. Amer. Chem. Soc., 9^, 7402 (1972) 

the domain specified by the chemist.  A DENDRAL3 system for molecular 

structure elucidation ' (based on the structure generator described in 

this work) of molecules in frozen hydrogen matrices would have differ- 

ent constrants  from  a  version     useful     to     biochemists 
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Chemists hitherto have been able to explore the de facto boundaries of their 

domain without explicit maps.   The exhaustive and efficient study of all 

possible structures con now be facilitated with the assistance of computer 

programs that can help assure that no possible construction has been 

21 
overlooked 
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Af piTidi x  A. Ptjtji volcncc Cljr.ocs and Finito Permutation Groups. 
ii.j r.v'it}crt of d jet of possible i sowers may be defined to be 
tCiuivjUnt •< a specified transformation of one member causes it to 
bo supct ,.ci..'.!)ie upon another member of the set. For example, there 
aro fifteen posbible ways of attaching two chlorine and four hydrogen 
atoms to a benzene ring (Chart III). 

Chofi m 

ci 

^v. CI   ci- 
a 
^ 

I     Equ'voienceC'oss 

XT- 

If rotations hiy multiples of 60 degrees are specified as allowed 
transformotions, the fifteen structures fall logically into three 
classes, termed "equivalence classes" (Chart III).   Within each 
equivalence class structures may be made superimposable by the 
rotational transformation.   If one element (in this case a molecular 
structure) is chosen from each equivalence class, the complete set of 
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pcssinle structures is determined, without duplication. It is the 
task of the labelling algorithm to produce one and only one graph 
kiocll'-no corresponding to one mewber of each equivalence class. 

The set of transformations which define an equivalence class is termed a 
"finite permutation group."   This permutation group may be calculated based 
on the symmetry properties of a graph   (or chemical structure In the example 
of Chart III).   TViis calculation provides the mechanism for prospective 
avoidance of duplication.   These procedures are described more fully In the 

accompanying paper 
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Appendix B.    Isomerism and S/mmetry. 

Appendix A introduced the concept of equivalence classes and finite permutation 
groups.   The selection of transformation (Appendix A) directs the calculation of 
the permutation group and thus defines the equivalence classes.   Different types 
of transformation may be allowed depending on the symmetry properties of the class 
of isomers considered.   This Appendix discusses ieveru' cf the possible types of 
isomerism, most of which are familiar to chemists.   The reader seeking a more 
thorough discussion of some types of isomerism discussed below is referred to an«„ 
exposition of molecular symmetry in the context of chemistry and mathematics. 

Isomers are mosi- often defined as chemical structures possessing the same 
empirical formula. Different concepts of symmetry give rise to different 
classes of isomers, some of which are described below. 

Permutational Isomers.   Permutationai isomers are isomers which have in 
common the same skeleton and set of ligands^JFhey differ in tbe distribution of 
ligands about the skeleton.   Gillespie et al.     and Klemperer     hove used the 
concept of permutational isomers to probe into unimolecular rearrangement or 
isomerization reactions. 

Stereo isomers.   Ugi et a I 
22 

ato'' 

have defined the "chemical constitution" of an 
to be its bonds and bonded neighbors.   Those permutational isomers which 

differ only by permutations of 'Igands at constitutionally equivalent positions form 
the class of stereoisomers. 

Isomers Under Rigid Molecular Symmetry.    If one perceives 
molecular structures as having rigid skeletons, the physical 
rotational (three dimensional) symmetries and transformationi may be 
readily defined.   Each transformation causes each atom (and bond) to 

(22)      I.  Ugi.  D.  flarquarding, H. Klusacek, G.  Gokel.  and P. Gillespie, 
JOggy,   Chem.   internal.  Edit..  9,  783  (1970). 

(23) P.    Gillespie.    P.  Hoffman,    H.    Klusacek,    0.    flarquarding,  S. 
Pfohl.     F.    Rannrer.    E.    A.    Tsolis,    and    I.    Ugi,    Angau,    Chen. 
internat.  Edit.,   18.  G87  (1371). 

(24) (a)     U.  G.  Klemperer, J.  Amer.  Chem.  Soc..  94, 6948  (1972); 
(b) U.   G.  Klemperer,   /fr/cl   p.  83G8; 
(c) W. G. Klemperer, ibid, 95, 380 (1973); 
(.d)     W. G. Klemperer, Ibid, p. 2105. 
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occupy the position of another or same atom (and bond) so that the 
rotated structure can physically occupy its former position and at 
the same time be indistinguishable from it in any way. This is the 
most familiar form of symmetry. Under this type of symmetry 
corformers are distinguishable and belong in distinct equivalence 
classes. Every transformation is orthogonal and preserves bond 
angles and bond  lengths as well  as maintaining true chirality. 

If one allows other orthogonal transformations that alter chiral 
properties of structures, equivalence classes result that treat both 
the left-handed and right-handed forms of chiral molecules to be the 
"same". Thus a "mirror image" transformation when suitably defined 
permits the left-handed form to exactly super impose the right-handed 
form and vice versa. 

i 
Isoners Under Total Molecular Symmetry. If in addition to the above 
mentioned rigid molecular transformations one recognizes the 
flexional movements of a nonrigid skeleton, a üynaraic symmetry group 
may be defined. Under this definition, different conformers now are 
grouped together. Thus the "chair" and "boat" conformations of 
cyclohexane belong to the same equivalence class under dynamic 
symmetry. The permutation group of skeletal flexibility is 
computable separately and independently of rigid molecular symmetry. 
One can then view total molecular symmetry as the product of the two 
finite permutation groups. 

Isoners Under Connectivity Symmetry. The concept of connectivity 
symmetry  was  introduced previously  (nETHOD  section).  Every 
permutation of atoms and bonds onto themselves is a symmetry 
transformation for connectivity symmetry if, 

i 

a) pach atom is mapped into another of like species, e.g., N to 
Na C to C, 0 to 0, and 

b) for every pair of atons, the connectivity (none, single, 
CfOubi« , triple, ...) is preserved in the mapping, i.e. the the 
connectivity of the two atoms is identical to the connectivity 
of the atoms they are mappeu into. 

^ One      can  readily recognize  that  transformations  as defined 
automatically preserve the valence and bond distribution of every 
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atom. It is very probable that reaflers accustomed to three 
dimensional rotational and reflectional symmetries uiII tend to 
equöte them with the symmetries of connect! v'ty. It is emphasized 
again that connectivity symmetry does not corsider bond lengths or 
bond angles, and it includes certain transformations that are 
conceivable but have no physical interpretation save that of 
permuting the atoms and bonds. 
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Appendix C 

Superatom Partitions.   The first step is to replace the hydrogen count with the 
degree of unsaturation.   The number of unsaturations (rings plus double bonds) is 
determined from the empirical formula in the normal way, as given in equation 1. 

n 
U   = 1/2 (2+E   (i-2)a.) 0) 

M ' 
U   ■ unsaturation 
i    = valence 
n   = maximum valence in composition 
a. = number of atoms with valence i 

If the unsaturation count is zero, the formula is passed immediately to the 
acyclic generator.   Specifying the unsaturations as U's, the example C.Hg 
becomes C .LL (hydrogen atoms ore omitted by convention). 

6   o 

There are several rules which are used during the partitioning scheme, as 

follows: 

I. The resulting formula is stripped of other univalent atoms (e.g., 
chlorine) as such atoms cannot be part of two-connected ring- 
superatoms. These univalent atoms are relegated to the pot of 

remaining atoms. 

||. The remaining pot in a given partition (those atoms not allocated to 
superatompots) can contain no unsaturations.   Thus a[[ rings and/or 
multiple bonds will be generated from the superatompots. 

III. It follows that every superatompot in the partition must 
contain at least two atoms of valence two or higher plus at least 
one unsaturation.   If there are no unsaturations then no rings could 
be built.   In addition, an unsaturation cannot be placed on a 
single atom.   This rule defines the minimum number of atoms and 

unsaturations in a superatompot. 
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IV. The maximum number of unsafuraHons in a superatompot is given by 
Equation 2.   Superatoms mus. possess at least one free valence '2    , so 
that superatompots with no free valences, e.g., O.U, or C.U-, are not 
allowed, unless the superatompot contains all atoms in the empirical 
formula (since no univalents, and thus no hydrogens, are allowed in a 
superatompot, this is indeed a rare occurance.) 

Umax = ,/2<ni    <i-2><V <» 

U        = maximum unsaturation of a superatompot 

n ■ maximum valence in composition 
i = valence 
a.       = number of atoms with valence i 

V. The maximum number of superatompots for a given formula is defined by 
equation 3. 

n 
S_    -- 1/2 E   a 

i=2 (3) 

n - maximum valence in composition 

^max = maximum number of superatompots in a superatom partition 

a,       = number of atoms with valence i 

note:     the summation is over all atoms of valence ) 2; univalents are 
not considered. 

Rules l-V define the allowed partitions of a group of atoms into superatompots. 
These rules do not, however, prevent generation of equivalent partitions, which 
would eventually result in duplicate structures.   By defining a canonical 
ordering scheme to govern partitioning, we prevent equivalent partitions.   One 
such canonical ordering is as follows: 

Canonical Ordering for Partitioning. 

a. Partition in order of increasing number of superatompots. 
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b. Fcr each entry in each part of (a), partition in order of 
decrecismg size of superatompot by allocation of atoms one at a 
time to the remaining pot. 

c. Each individual partition containing two or more 
superatompots must be in order of equal or decreasing size of 
the superatompot. In other words, the number of atoms and 
unsaturations in superatompot n+1 must be equal to or less than 
the number m superatompart n. The program notes the equality 
of superatompots in a partition to avoid repetition. 

Th« application of rules I-V is best illustrated through reference to 
the example of C U . The maximum number of superatompots for this 

o 3 

example is three (Equations). There is one way to partition CU 

G 3 
into one superatompot with no remaining pot, partition 1,  Table II 
Subsequent assignment of carbon atoms one at a time to the remainina 
pot results in partitions 2-4.  Table II.  The next partition 
following the sequence 1-4 would be CU with C assigned to the 

2 3     4 
remaining pot. This partition is forbidden as C U  has no free 

2 3 
valences.  The three ways to partition CU into two superatompots 

6 3 
are  indicated along with the corresponding part 11ions following 
assignment of atoms to the remaining pot, as partitions 5-10, Table 
II.  There  is only one unique way of partitioning C U  into tnree 

8 3 
superatompots, partition 11, Table II. 

Calculation of Free Valence. The expression for the free valence of 
a superatompot is given by equation 4. 

n 
FV - (2 +1 (i-2)a )-2U 

i-3     i 

U  - unsaturation of  superatompot 
i   - valence 
n  =» maximum valence  in composition 
a - number of atoms with valence  i 

i 
FV «   free valence 

41 
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JP.jrti tioniniL_.qi_,Free_yaIcnce^ Because ring-superatoms are tuo- 
connected structures two valences of each atom of a suparatompot r.iuet 
be used to connect the atom to the ring-superatom. Thus no free 
valences can be assigned to bivalent nodes in the valence list, a 
maxinum of one to each trivalent. a maxi mum of two to each 
tetravalent, and so forth. The example (Fig. 2) is further 
simplified in that there are only tetravalent nodes in the valence 
list. Inclufion of trivalent nodes (e.g., nitrogen atoms) merely 
extends the number of possible partitions. The free valences are 
partitioned among the tetravalent nodes in all ways, as illustrated 
in Figure 2. It is important to note that removal of atom names 
makes all n-valent (n-2 or 3 or ...) nodes in the valence list 
equivalent    at    this    stage.      Thus    the    partitions    (of    eight  free 
valenc«t among six tetravalent nodes) 222200,  222020, 222002  
002222    are    all    equivalent.      Only    one    of    these     parti tioni" le 
considered  tc avoid eventual  duplication of structures. 

Calculation   of   Loops.    There    are    several    rules   which   must be 
follc^ed  in consideration of   loop assignwent to ring-superatoms.    The 
minimum     miNLOOPSi  and    maximum  (HAXLOOPS)    numbers of    loops    for a 
given valence  list are designated by equations 5 and 6. 

MIN LOOPS   = max [ 0 , a   + 1/2(2n - Z   ja.)} 
2 j=2    J 

n 

MAXLOOPS  ■ min { o   , 1/2 E    §-2) a.} 2 H J 

(5) 

(6) 

MINLOOPS 
MAXLOOPS 

J 3 

= minimum number of loops 
= maximum number of loops 
■ number of nodes with degree j 
■ degree 
■ highest degree in list (a   p O) 

The form of the equations results from the following consideratFons: 

1)        Only secondary nodes may be assigned to loops.   Nodes of 
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higher degree uillaluays be in the non-loop portion of the 
nng-superatom. 

2) A loop, by rtefinition. must be attached by two bonds to a 
single node in the resulting rmg-superatom. The loop cannot 
be attached through the free valences. Thus the degree list 
must possess a sufficient number of quaternary or higher decree 
nodes  to support   the  loopU). 

3) Each loop must have at least one secondary node, which is 
the reason HAXLOOPS is restricted to be at most the number of 
secondary nodes  in the degree  list   (Equation 8). 

♦I There must be available one unsaturation for each loop 
(this is implicit in the calculation of fllNLOOPS and HAXLOOPS) 
as each  loop effectively forms a new ring. 

fgrtitioninq c. Secondary Nodes between Loops and Non-Loops.   For each of 
the possible numbers of loops (0, 1,  ...) the secondary nodes are removed ^rom 
the degree list and partitioned among the loops, remembering that the loops are 
at present Indistinguishable and each loop must receive at least one secondary 
node.    In the example (Fig. 2), starting with the degree list (4, 0, 2), there ore 
three ways of partitioning the four secondary nodes among two loops and the 
remaining non-loop portion.   Removal of the four secondary nodes from the 
degree list and assignment of two, three or four of them to two loops results in 
the list   peclfled In Figure 2 as the "reduced degree list".   Specification of two 
loops transforms the two quaternary nodes In the degree list into two secondary 
nodes.   This results from the fact that two valences of a quaternary or higher 
degree node must be used to support each loop.   These are "special" secondary 
(or higher, for atoms with valence > 4) nodes, however, as these particular nodes 
will have loops attached as the structure Is built up.   Thus, in the example, 
any secondary nodes which are found In the reduced degree list will have a loop 
attached In a subsequent step.   The degree list (4, 0, 2) thus becomes the 
reduced degree list (2, 0, 0) In the partition specifying two loops (Fig. 2). 
Similarly, the partition of one loop for the degree list (3, 2, 1) results in a 
reduced degree list of (I, 2, 0) with the three original secondary nodes 
partitioned among loop and non-loop portions (Figure 2). 

If, after the first, second, ... nth loop partition, there remain one 
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or more quaternary or higher degree nodes in the reduced degree list, 
the list must be tested again for the possibility of additional 
loops. Each loop partition uill result in an additional set of 
structures. The second pass uill yield those structure« possessing 
loops on loops, and so forth. One such superaton Hhich would be 
generated  in  this manner fro« a coaiposition of  (at  least) C U    is 15. 

6 5 

c-c-cc-c-c 
15 

Partlfioninq of Nan-Loop Secondary Nodes among Edges.   The secondary nodes 
which were not assigned to loops ("non-loop secondary nodes") are partitioned 
among the edges of the graphs after labelling with special secondary nodes, or 
loops.    Loops are not counted as edges.   There are, for example, five ways to 
partition four non-loop secondary nodes among the edges of the vertex-graph 
possessing two quaternary nodes (Fig. 2). 

Partitioning of Loop Secondary Nodes among Loops.   This partitioning step is 
carried out assuming indistinguishability of the loops.   Each loop must receive 
at least one secondary node, which limits the number of possible partitions. 
Results art presented in Figure 2. 
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Appendix D - Acyclic generator 

i 

A method of construction of structures similar to the method for acyclic 
Isomers is utilized to join multiple ring-superatoms and remoinina qtoms. 
The DENDRAL algorithm for construction of acyclic isomers '  '"' " 
relied on the existence of a unique central atom (or bond) to every molecule. 
The present acyclic generator uses the same idea.   The present algorithm, though 
simpler in not having to treat interconnection of atoms or ring-superatoms through 
multiple bonds, is more complex because of the necessity to deal with the 
symmetries of the ring-superatoms. 

Dl.   flethod for the case with even nuaber of total  atoms. 

The     superatom partition   C U /C U /-/C    (partition   7,  Table    II  and 
2 2    2 1       2 

Ficjure    2)     will  be    used    here  to    illustrate    this    procedure.     The 
superatompots C U    and C U    have exactly one   possible ring-super a to« 

2 2 2 1 
for  each   (see Table VII). 

Table VII. 
Superatompot 

C U 
2 2 

C U 
2 1 

Superatom 

-L=C- 

>C=C< 

Thus acyclic structures are to be built with -CSC- ,  >C=C<    and  tuo 

There are an even number of atoms and ring-superatoms. The 
structures to be generated fall into two categories« (a) those with 
bond centroid;   (b)   those with an atom centroid.15 

(25) B.  G.  Buchanan.  A.  n.  Ouffield,  and A.  V. Robertson,   in "Mass 
spectrometry.   Techniques and Applications," G. U.  A.  flilne,   ed.,   John 
Wiley  and Sons.   Inc.,   1971,  p.   121. 
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Category A. POND CrNTROID (see Fig. 3) 

Step 1. Partition into Two Parts. 

The atoms and r ing-superatoms in the list of superatoms are 
partitioned into two parts, uith each part having exactly half the 
total number of items. Each atom or ring-superaton it a single item. 
Each part has to satisfy equation 7, called the Restriction on 
Univalents. 

Restriction on Uni/alente: 

a. <_ [I    (1-2)0.1 - 1 
1=2 ' 

0) 

i    = valence. 
a. ■ number of atoms or superatoms of valence i. 
n   = maximum valence in composition. 

There are two ways of partitlot.    i the four items into two parts (Fig. 3).   The 
restriction on univalents Is satiried in each case.   The restriction will disallow 

certain partitions that have "tc-j many' 26 univalents oriier than hydrogens and 

tfierefore Is essential only in partitioning compositions that contain any number 

of non-hydrogen univalents. 

Step 2.   Generate Radicals from Each Part. 

Using a procedure described in Section D3, radicals are generated from each part 
in each partition.   The result of application of this procedure to the example is 

shown in Table VIII. 

(26)        The form of equation 7 results from the fact that the number a' univalents (a.) 
cannot exceed the number of free valences necessary to connect the 
superatoms, leaving one valence free for the radical valence. 
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Table VIII.   Radicals Generated ftxjm Given Parts 

Part | Radicals 

(la) -C=C- ,   >C=C< -C = C-CH=CH, 

-CH=CH-C=CH 

-C-C=CH 

II 

Ob)   C, ■CH2-CH3 

(2a) -C=C- ,  C -C = C-CH. 

-CH2-CsCH 

(2b) )C=C<   ,  C -CH=CH-CH 

-C-CH. 

CH, 

-CH2-CH=CH2 

Step 3.     Form Molecules Fro» Radicals. 

The radicals are combined in unique pairs, within each initial 
partition. Each pair gives rise to a unique molecule, for each of 
uhich the centroid is a bond. There are nine such molecules for the 
example chosen   (Fig.  3). 
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Category B.   ATOM CENTROID (see Fig. 4). 

Step 1. Selection of Centroid. 
One must consider every unique atom or ring-superotom that has a free 
valence of three or higher as an atom centroid       .       ,.   In the example, 
of three candidates available:   -C=C- , > C=C< and C, the first is not 
chosen for it has a free valence of only two. 

Step 2. Partition the Rest of the Atoms. 
The atom or ring-superatom chosen for the centroid is removed from Hie set 
and the rest are partitioned into a number of parts less than or equal to the 
valence of the central atom.   Each part must have less than half the 
total number of items being partitioned (again a ring-superatom is a 
single item).    Each part must satisfy the restriction on univalents (equation 7). 

Thus, for the case where a carbon is the centroid, four partitions are 
attempted.   The condition that each part has less than or equal to one-half 
the number of superatoms remaining after selection of the central atom must 
be satisfied, or at most one for this example.   There is exactly one 
partition for three parts, i.e., one in each.   Tlie partitions are shown in 

Figure 4. 

Step 3. Generate   Radicals. 
Once again, using the procedure described in Section D3, radicals are 
constructed for each part in each partition.   For example, the partition 
-O^C- gives rise to exactly one poss'ble radical -CssCH (Fig. 4). 

Step 4. Combine Radicals. 
Although in the example shown every part generates only one radical, in the 
general case there will be many radicals for each part.   If so, the radicals 
must be combined to give all unique combinations of radicals within each part. 
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Step 5. Form Molecules from Central Atom and Rodicals. 
If the centroid is not a ring-superatom but is a simple atom, then each 
combination of radicals deriveH in Step 4 defines a single molecule that is 
unique.   Thus for example when C is chosen as the centroid, step 4 gives one 
combination of radicals which determines a single molecule when connected 

to the central C (see Figure 4). 

If the centroid is a ring-superatom and the valences of the ring-superatom 
are not identical then differen* ways of distributing the radicals around the 
center may yield different molecules.   Labelling of the free valences of the 
central ring-superatom with radicals treated as labels (supplemented with 
adequate number of hydrogens to make up the total free valence of the ring- 
superatom) generates a complete and irredundant list of molecules.   Thus 

>0=C< is labelled with the label set: 

one of -C—CH, two of -ChL, and one of -H. 

There are two unique labellings as shown In Figure 4. 

D2. Method for odd number of total atoms. 

With an odd number of total atoms, n^ structures can be generated with a bond 
centroid.   Only atom centroids are possible    ' .   However, it is 
possible for structures to be built with a bivalent atom at the centroid.   Thus 
the procedure outlined in Category B above is followed, in this case also 

allowing a bivalent atom as the centroid. 

D3. Generation of Radicals. 

The goal of this procedure is to generate all radicals from a list of 
atoms and ring-superatoms.   A radical is defined to be an atom or 
superatom with a single free valence.   When a composition of atoms and 
ring-superatoms is presented, from which radicals are to be constructed, two 

special cases are recognized. 

Special Case 1.   Only One Atom in List of Atoms. 
When only one atom which is not a ring-superatom is in the list, only one 
radical is possible.   For example, with one C, the radical -CHß is the 

only possibility. 
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Special Case 2.   Only One Rirtg-superatom in List of Ring-superatoms. 

In this cas«, depending upon the symmetry of the ring-superatom, :everal 
radicals may be possible.   This is determined by labelling the free valences 
of the ring-superatom with one label of a special type, a "radical-valence", 

Example:   A list of ring-superatoms consists of one ring-si'peratom, J^. 

/ 

\ 

16 

C- 

C- 

Tuo radicate result  from  labelling uith one radical  valence. 

—CH 
/ 

\ 

CH 

CH 

CH2 

N 

C— 

CH 

17 » 

General Case 

10,25 
Radicals have uniquely defined centroids as well ^ .   The centroid is 
always an atom of valence two or higher.   The steps for construction of 

radicals are as follows. 

Step |.   Selection of /.torn Centroid. 

Any bivalent or higher valent atom or ring-superatom is a valid candidate to 
be the centroid of a radical.   Thus, for example, for the composition 
-C=C-, )C=C< (see part la in Figure 3) both are valid centroids (Figure 5). 
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Step 2.   Portifion the Rest of the Atoms. 
The atom chosen for the centroid is removed from the list of superatoms.   One 
of the valences of the centroid is to remain free (Hie radical valence). 
Therefore, the rest of the atoms in the list are partitioned into less than or 
equal to (valence of centroid - 1) parts.   Of course, each part should 
satisfy the restriction on univalents (equation 7) but for constructing 
radicals there is no restriction on Hie size of tfie parts. 

Step 3.   Form Radicals from Each Part. 
The procedure to construct radicals is freshly invoked on each part thus 
generating radicals.   Each part in Figure 5 gives rise to only one radical, each 
arising from special case 2. 

Step 4.   Combine Radicals in Each Part. 
For the example in Figure 5,  each part yields only one radical.   In a more 
general situation, where the rest of the list of superatoms after selection of a 
centroid is partitioned into several parts, and where each part yields 
several radicals, the radicals are combined to determine all unique combinations 
of radicals. 

Step 5.    Label Central Atom with Radicals. 
If the center Is an atom (not a ring-superatom) then each unique combination 
defines a single unique molecule. 

If the center is a ring-superatom, the radicol: are determined by labelling the 
center with a set of labels which includes:   i)   the radicals; ii)  a leading 
radical-vale nee; ill)   an adequate number of hydrogens to make up the 
remaining free valences of the ring-superatom.   One selection of center gives 
one radical and the other gives two more, to complete a list of three 
radicals for the example chosen (Fig. 5). 

Summary 

For the example chosen to illustrate the operation of the acyclic generator, 
twelve isomers are generated, nine shown in Figure 3 ond three shown in 
Figure 4. 
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FIGURE CAPTIONS 

Figure 1. Outline of the strategy for structure generation. 

Figure 2. Major steps in the generation of isomers as illustrated for 
C Hp.   This example outlines the method for one 
superatom partition, that which allocates all atoms to 
a single superatompot with no atoms in the remaining pot. 

Figure 3. Operation of the acycli'- generator for the case of a bond 
as a cent.oid for the structures. 

Figure 4. Operation of the acyclic generator for the case of an 
atom or superatom as a centroid for the structures. 

Figure 5. Outline of the method for generation of radicals which 
are eventually combined by the acyclic generator to yield 

final structures. 
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Figure 3 

Category   A. BOND CENTROID 

List of Superatoms        [-CiC-,       >CSC{.     C.C 

Partition into 

2 parts 

Part Number 

Generate   Radicals 

for each port 

[ See Table   VW ] 

Combine   Radicals 

in pairs to form 

Molecules 

-CHC-. )c=c</c2 -c = c-, c/>c-c< ,c c2 

la lb 

1    1 
3 radicals        I radical 

(3*10   3  molecules 

CH3- CH2- C = C-CH = CH2 

CH3 - CH2 - CH = CH - CaCH 

CH, -CM. -C - C s CH 3 2       || 
CH, 

2o 2b 

2 radicals        3radicals 

(2*3=)   6 molecules 

CH3-CH = CH-C£C-CH3 

CHa-CH^H-CHz-CsCH 

CH,-C - CHC-CH, 

CH,- C-CH,-C = CH 
3    & 2 

CHg 

CH2=CH-CH2-CaC-CH3 

CH2=CH-CH2-CH2-C5CH 
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Figure 4 

Category B ATOM  CENTROID 

List of Superatoms 

Select   Atom  Centroid 

Partition Rest  into «parts = 1,2 

up to   (free valence) parts 

Part 

[ -CsC-,      >C = C< .   C ,   C ] 

Generate    Radicals  from 

each part 

Combine   Radicals in 

each  part 

Label     Atom   Centroid 

with      radicals 

VOID 
\ 

-CsC-ZC/C 'i 2 3 

-C=CH/-CH3/-CH3 

only   l   way 

(-C5CH,-CH3.-CH3) 

CH = C-CH= C -CH3 

CH=C-C = CH-CH, 
I 3 

CM, 

tparts = 

VOID VOI VOID 

>C = C< /-C=C- /C 
I 2        3 

- CH = CH2/-C2CH/CH3- 

only    I   way 

(-CH=CH2,-C=CH1-CH3) 

CH2=CH-CH-C=CH 

CH3 
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Figure 5 

GENERATION     OF     RADICALS 

List of Superotoms 
(from Part Number la, 

Figure 3) 

[ -C=C-   .       >C = C <] 

Select   Atom  Centroid -C EC- 

Partition Rest into 

unto (valence-I) parts 

Part 

Generate Radicals 

Combine   Radicals in 

each part 

Label    Atom   Centroid 

with    radicals + one 

leading  radical valence 

♦ hydrogens 

only   I    partition 
into   I   part 

>C = C< 

- CH = CH2 

only I 

-CH=CH, 

C=C-CH=CH2 

only I partition 
into I part 

-CBC- 

-C sCH 

onlyl 

= CH 

CH = CH-C 2CH 

■C- C= CH 
II 
CH, 
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